Monthly Archives

September 2015

HIV

By Applying for disability benefits when you have:

Can I Get Social Security Disability Benefits for HIV / AIDS?

  • How Does the Social Security Administration Decide if I Qualify for Disability Benefits for HIV / AIDS?
  • About HIV Infection and Disability
  • Winning Social Security Disability Benefits for HIV / AIDS by Meeting a Listing
  • Residual Functional Capacity Assessment for HIV / AIDS
  • Getting Your Doctor’s Medical Opinion About What You Can Still Do

How Does the Social Security Administration Decide if I Qualify for Disability Benefits for HIV / AIDS?

If you are infected by HIV, Social Security disability benefits may be available. To determine whether you are disabled by HIV / AIDS, the Social Security Administration first considers whether your HIV / AIDS is severe enough to meet or equal a listing at Step 3 of the Sequential Evaluation Process. See Winning Social Security Disability Benefits for HIV Infection by Meeting a Listing. If you meet or equal a listing because of HIV, you are considered disabled. If your HIV / AIDS is not severe enough to equal or meet a listing, the Social Security Administration must assess your residual functional capacity (RFC) (the work you can still do, despite your HIV), to determine whether you qualify for disability benefits at Step 4 and Step 5 of the Sequential Evaluation Process. See Residual Functional Capacity Assessment for HIV Infection.

About HIV Infection and Disability

What Is HIV?

Human immunodeficiency virus (HIV) causes acquired immunodeficiency syndrome (AIDS). The most common type of HIV in the U.S. is HIV-1. Another type of HIV, HIV-2, is more common in Africa but is spreading to other countries. HIV-1 and HIV-2 have a 40% similarity in DNA. Current HIV testing can detect either type, but HIV-2 cases are still relatively rare in the U.S.

Origin of HIV

Sophisticated genetic research shows that HIV-1 (see Figure 1 below) originated in Africa and was transmitted from monkeys to the human population in about 1908, existing at low levels until the middle of the 20th century when the development of population centers facilitated spread.

While it was previously thought that monkeys had immunity from HIV because of its presence in them for perhaps millions of years, it is now known that monkey infections have not existed much longer than human infections. The sootey mangabey monkey first caught simian immunodeficiency virus (SIV) in around 1808 and it jumped into humans to become HIV-2 in about 1933. It is still not known why monkeys carrying these viruses suffer no ill effect, while they are so devastating to humans.

The HIV-1 Virus

Figure 1: The HIV-1 virus.

Infection Rates

As of 2008, the global infection rate is estimate to be about 33.2 million people with a cumulative death toll to date of about 25 million people. In the U.S.it is estimated that there are about 1.1 million HIV infected people and about 25% of these don’t know they are infected. These carriers nevertheless remain potentially infectious to other people.

Transmission

The majority of cases are now thought to occur by heterosexual transmission. New HIV infections are still growing in the U.S. at the rate of about 40,000 to 50,000 per year. HIV infection is also seen in IV drug users, homosexual and bisexual men, and others who engage in high-risk sexual activity such as prostitution and unprotected sex.

There is no risk of infection from casual contact, as living in the same household. Although HIV exists in saliva, transmission by kissing has been demonstrated in only one case when both individuals had gum disease so that there was exposure to blood. HIV is present in an infected mother’s milk.

Testing of the blood supply prior to transfusion is carried out for both HIV-1 and HIV-2.

Effects of HIV Infection

Infection with HIV is not AIDS and may produce no symptoms. However, eventually HIV suppresses the patient’s immune system by destroying the CD4 helper T lymphocytes. This opens the door to easy development of cancers, bacterial infections, viral infections, fungal infections, protozoan infections, parasitic infections, and general debilitation. Additionally, HIV itself may damage organs such as the brain.

When such severe consequences of having immune suppression as result of HIV infection appear, then the patient has developed AIDS. The listing for HIV lays out the broad areas of impairment that can potentially be manifested in AIDS. If the listing is satisfied, the claimant has AIDS. See Winning Social Security Disability Benefits for HIV / AIDS by Meeting a Listing.

The average normal CD4 lymphocyte count is 500 to 1300 per mm3 of blood (average, 800 per mm3). Opportunistic infections, cancer and other manifestations of AIDS typically appear when the CD4 count falls to 200/mm3 or less.

Treatment

When to Begin

It remains controversial at just what CD4 count therapy should start, although everyone agrees that people with 200/mm3 or less should be treated. The issue is controversial because starting treatment with CD4 counts high enough that the patient has no clinical disease subjects the patient to the increased danger of creating drug-resistant HIV and the toxicity of the drugs. On the other hand, starting treatment with too low of a CD4 count imperils recovery of the immune system.

Patients have a life-expectancy of at least 7 years on drug regimens that were started with CD4 counts above 500/mm3 and at least 30,000 copies of HIV RNA in the blood, while patients starting treatment at lower CD4 counts averaging 87/mm3 have done much more poorly with a life expectancy of less than 3 years.

In 2001 the U.S. Department of Health and Human Services (HHS) recommended that treatment be started at a CD4 count of 350/mm3 or a viral load higher than 55,000 copies of HIV RNA per mm3 of blood. Also, it is agreed that those few patients who are detected within 6 months of infection should be treated in an attempt to save immune functions that will otherwise be irretrievably lost. A large-scale, multi-year clinical trial at a cost of $121 million by the National Institute of Allergy and Infectious Diseases started in 2002. It is expected to involve 6000 patients and take 9 years. Not all experts are enthusiastic that even this expensive trial will answer needed questions about just when therapy should start. For one thing, better control of drug toxicity could affect clinical decisions to start earlier treatment.

In 2006, the International AIDS Society—USA released its newest guidelines for antiretroviral therapy, and continues to recommend that treatment in both symptomatic and asymptomatic individuals start when CD4 counts fall below 350 cells/microliter and before they reach 200 cell/microliter.

No Cure

Regardless of the treatment given or when it is started, therapy cannot cure HIV infection or AIDS. Patients who have been treated for years with potent drugs to the extent that there is no detectable virus in the bloodstream will relapse into active infection if medication is stopped. HIV can attach itself to the chromosomes of white blood cells and pass itself along to new cells when the old ones die. In this situation, the virus does not replicate and therefore is not susceptible to drugs. There is also evidence that the virus can lie dormant in other tissues besides white cells. Therefore, medication must be continued indefinitely.

Drugs for Treating HIV

Antiretroviral medications inhibit the reproduction of the HIV virus. There are six classes: non-nucleoside reverse transcriptase inhibitors, nucleoside reverse transcriptase inhibitors, protease inhibitors, entry inhibitors, fusions inhibitors, and integrase inhibitors. They each work in a different way. Non-nucloeside reverse transcriptase inhibitors work by inhibiting the reverse transcriptase enzyme that HIV needs to change its RNA to DNA in order to infect the nucleus of the cell it has invaded. Nucleoside reverse transcriptase inhibitors prevent reproduction of the virus by providing it with faulty components that it needs to make copies of itself. Protease inhibitors interfere with replication of the virus after it has infected the host cell’s nucleus. Entry inhibitors and fusion inhibitors prevent HIV from entering cells. Integrase inhibitors inhibit a protein that HIV uses to insert its genetic material into the genetic material of an infected cell.

Highly active antiretroviral therapy (HAART), the current recommended treatment for HIV, involves taking a combination of anti-HIV medications from at least two different classes.

The latest evidence shows that drug therapy has substantially lengthened the lifespan of those with HIV infection. While untreated HIV will typically result in death within 12 years, the life-expectancy of a treated HIV-infected 20-year-old has increased from 56.1 years in 2005 to 69.4 years in 2005. The CD4 cell count is also important. A 20-year-old with a CD4 count of less than 100/microliter has a life expectancy of 32.4 additional years, while the same person started treatment CD4 count over 200/microliter can expect 50.4 more years of life.

Side Effects of Treatment

It is possible for some people to be asymptomatic on HAART once HIV loads have been suppressed and CD4 counts return to normal, provided that opportunistic infections have been controlled and there is no cancer or other chronic residual impairment. However, HIV strains are becoming increasingly resistant to drugs. Furthermore, medication side-effects can be debilitating even if the virus is kept under control.

The great majority of patients taking multiple drugs will have some type of side-effects. The most frequent side-effects are nausea, vomiting, insomnia, fatigue, malaise, and headache. Other possible side-effects include anemia, pancreatitits, peripheral neuropathy, general decrease in white cells (pancytopenia), cough, diarrhea, sore throat (pharyngitis), shortness of breath, muscle aches (myalgias), muscle weakness, acidosis, hepatitis, kidney stones (neophrolithiasis), rash, and fever. Side-effects will generally reverse with cessation of medication.

In addition, various impairments, such as infections and cancers, that can be associated with AIDS must also be treated. These impairments and the drugs used to treat them can add a whole additional universe of possible symptoms and complications. Therefore, each case must be carefully evaluated on an individual basis; there is no way to know ahead of time or to presume what problems will be present.

Continue to Winning Social Security Disability Benefits for HIV / AIDS by Meeting a Listing.

Lung disease

By Applying for disability benefits when you have:

Can I Get Social Security Disability Benefits for Lung Disease?

  • How Does the Social Security Administration Decide if I Qualify for Disability Benefits for Lung Disease?
  • About Lung Disease and Disability
  • Winning Social Security Disability Benefits for Lung Disease (Chronic Pulmonary Insufficiency) by Meeting a Listing
  • Residual Functional Capacity Assessment for Lung Disease
  • Getting Your Doctor’s Medical Opinion About What You Can Still Do

How Does the Social Security Administration Decide if I Qualify for Disability Benefits for Lung Disease?

If you have lung disease, Social Security disability benefits may be available. To determine whether you are disabled by your breathing problems, the Social Security Administration first considers whether your lung disease is severe enough to meet or equal a listing at Step 3 of the Sequential Evaluation Process. See Winning Social Security Disability Benefits for Lung Disease by Meeting a Listing. If you meet or equal a listing because of lung disease, you are considered disabled. If your breathing problems are not severe enough to equal or meet a listing, Social Security Administration must assess your residual functional capacity (RFC) (the work you can still do, despite your lung disease), to determine whether you qualify for benefits at Step 4 and Step 5 of the Sequential Evaluation Process. See Residual Functional Capacity Assessment for Lung Disease.

About Lung Disease and Disability

How Respiration Occurs

Red blood cells must be brought as closely as possible to the air we breathe, so that hemoglobin in the cells can give up waste carbon dioxide from cellular metabolism and take on oxygen. To accomplish this, the lungs have millions of tiny air sacs (alveoli) with very thin walls (alveolar membranes) containing microscopic blood vessels (capillaries) (see Figure 1 below). This anatomy of the lungs allows exposure of a large surface area of the blood to the air. Oxygen (O2) and carbon dioxide (CO2) gases diffuse (move) across the one cell thick alveolar membrane in opposite directions with the oxygen entering the blood and the carbon dioxide leaving it. This process is known as gas exchange.

Bronchi and lungs

Figure 1: Bronchi and lungs.

The gas exchange part of the lungs is known as the lung parenchyma (see Figure 2 below). Air is delivered to the parenchyma of the lungs through the bronchial tree — a repetitively branching tubular system for air conduction. It consists of the trachea, from which arises a right and left main (primary) bronchus to the right and left lungs. Smaller bronchi branch from the main bronchus of the right or left lung, then to smaller bronchi to the various lobes of the lungs, then to even smaller bronchi (bronchioles) that eventually reach the alveoli.

Mechanism of gas exchange

Figure 2: Mechanism of gas exchange.

How Respiration Is Impaired

Many diseases can affect breathing. The most useful classification of respiratory disorders is based on the manner in which the ability of air to come into contact with the hemoglobin in red blood cells (RBCs) is disrupted.

There are only two ways in which respiration can be impaired, regardless of the exact nature of the disorder:

1. Disease that prevents adequate amounts of air from reaching the gas-exchange level of the lungs (obstructive lung disease).

2. Disease of the lung tissue itself that reduces gas exchange (restrictive lung disease).

Thus, physicians have found it broadly useful to classify respiratory disorders as obstructive or restrictive, or a combination or the two.

Chronic Obstructive Lung Disease (COPD)

Chronic obstructive pulmonary disease (COPD) is the most common type of lung disease seen by the Social Security Administration. “Obstruction” refers to the fact that air flow in and out of the lungs is impeded. The three most frequent types of COPD in adults are:

1. Emphysema.

2. Chronic bronchitis.

3. Asthma.

In emphysema, lung tissue itself is destroyed. Damaged lung tissue forms non-functional spaces that trap air, and the lungs expand. The effect of these abnormalities is to obstruct air flow to and from the lungs. Emphysema and chronic bronchitis often occur together usually in people with a history of cigarette smoking.

Chronic bronchitis can also occur from long exposure to chemical fumes associated with a particular occupation. Inflammation of the inner surface of bronchi results from exposure to irritating substances. This inflammation, along with excessive secretion of bronchial mucous glands results in bronchial narrowing. Thus, bronchial tree resistance to air flow increases—there is obstruction of air flow.

Other less common causes of COPD include cystic fibrosis and bronchopulmonary dysplasia (BPD). These disorders, as well as asthma, have separate specific listings. See Can I Get Social Security Disability Benefits for Asthma? and Can I Get Social Security Benefits for Cystic Fibrosis?

Restrictive Lung Disease

The hallmark of restrictive lung disease is loss of usable lung volume, either due to:

1. Disease of the gas exchange part of the lungs (lung parenchyma), or

2. Some disorder outside of the lungs (extrapulmonary) that prevents air from adequately ventilating normal lung parenchyma.

Examples of Parenchymal Restrictive Lung Diseases

    • Infections (bacterial, fungal, viral, parasitic). Chronic infections that damage lung tissue, such as severe bronchiectasis or advanced pulmonary TB, could result in some degree of restrictive impairment.
    • Radiation, such as used for treatment of cancer, can damage lungs. Radiation lung damage is less of a problem than in the past, because modern equipment can direct therapeutic radiation in beams precisely delivered to the tumor. To the extent that this is impossible because of the size or location of the tumor, it is possible to have fibrotic lung damage caused by radiation.
    • Inhalation of damaging substances into the lung. Pneumoconiosis is a non-specific term that refers to lung damage from inhaling small particles of some kind. Examples of pneumoconiosis include that caused by asbestos (asbestosis) (see Figure 3 below), coal dust (anthracosis), beryllium (berylliosis) silicon dust (silicosis), aluminum, iron, tin (stannosis) and talc. Inhalation of toxic chemicals—such as acidic fumes—can also damage lung tissue.

Asbestos particles in lung cells

Figure 3: Asbestos in lung cells.

  • Drug side-effects.
  • Autoimmune diseases. Autoimmune disorders such as sarcoidosis, scleroderma, systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), polymyositis, ankylosing spondylitis, and mixed connective tissue disorders can cause pulmonary disease. In all of these disorders, some kind of immune system dysfunction damages the lungs. See Can I Get Social Security Disability Benefits for Lupus? and Can I Get Social Security Disability Benefits for Arthritis and Joint Damage?
  • Idiopathic diffuse interstitial pulmonary fibrosis (cryptogenic fibrosing alveolitis). This condition causes progressive scarring of the lungs on a microscopic level. This damage can result in decreased gas exchange capacity of the lungs, increasingly severe hypoxemia (lack of oxygen in the blood) and eventually death from respiratory failure. The rate of progression is highly variable, but median survival is less than 3 years. Some cases remain slowly progressive for a number of years, then are triggered by some unknown event to become rapidly more severe.
  • Other diseases. Examples of other diseases that can cause pulmonary fibrosis include alveolar proteinosis, acquired immunodeficiency syndrome (AIDS), acute respiratory distress syndrome (ARDS), amyloidosis, bone marrow transplantation, cancer, eosinophilic granuloma, eosinophilic pneumonia, lipoid pneumonia, genetic metabolic diseases caused by enzyme deficiencies (Gaucher’s disease, Niemann-Pick disease), Hermansky-Pudlak syndrome, pulmonary vasculitis, tuberous sclerosis, and neurofibromatosis. See Can I Get Social Security Disability Benefits for HIV / AIDS?

Examples of Extrapulmonary Restrictive Lung Diseases

    • Abnormal spinal curvatures. Abnormal curvatures of the spine can interfere with normal breathing movements. Scoliosis is a common spinal disorder, but will not compromise breathing until the major abnormal curve reaches about 60 degrees. Kyphosis is an abnormal curvature of the upper (thoracic) spine that causes a bent-forward or “hunched-over” posture. Kyphoscoliosis is a combination of both kyphosis and scoliosis.
    • Surgical resection. Removal of lung tissue limits the surface area available for gas exchange.
    • Spondyloarthropathies. Inflammatory disorders of the spine, such as ankylosing spondylitis, can make the spine more rigid by increased calcification of the spine and associated soft tissue ligaments. The ribs attach to the spine and their movement is impeded during expansion and relaxation of the chest during breathing. This limitation will decrease breathing capacity. See also Can I Get Social Security Disability Benefits for Back Pain?
    • Thoracoplasty. Thoracoplasty, usually involving removal of one or more ribs, distorts the normal shape of the chest. The intercostal muscles between the ribs help expand the chest during inspiration. However, mechanical distortion of the chest wall is probably more important in decreasing ability to ventilate the lung during respiratory movements of the chest.
    • Obesity. Marked obesity can result in a significant reduction in ventilation capacity. Because of the weight of fat on the chest wall, the work of breathing is increased during inspiration. Furthermore, abdominal subcutaneous fat as well as intra-abdominal fat resists movement of the diaphragm—a respiratory muscle consisting of two sheets of muscle separating the chest and abdominal cavities (see Figure 4 below). The diaphragm must be able to move downward with inhalation in order to maximally expand the chest.

Chest cavity and diaphragm

Figure 4: Chest cavity and diaphragm.

  • Other important causes of restrictive respiratory impairment. Many disorders can result in weakness affecting the muscles of respiration (diaphragmatic muscles or intercostal muscles). Myasthenia gravis is an autoimmune disease that causes weakness through a biochemical interruption of the body’s ability to excite muscles, including the muscles of respiration. In fact, respir